
Direct Addressing - key is index into array => O(1) lookup 
Hash table: 
-hash function maps key to index in table 
-if |universe of keys| > # table entries then hash functions collision are guaranteed => need  
 
Collision resolution - how to handle collisions 
Changing - table entries are linked lists, colliding elements are elements of the same list 

load factor: alpha = N/M = average number of elements per bucket 
For perfect hash function (ie: Pr[h(i) = h(j)] = 1/M) 
-search takes O(1 + alpha) 
-insert takes O(1) [just have to append to linked list] 
-searches gradually take longer as load factor increases 

Open addressing - if collision occurs keep searching for empty space 
Linear probing: ith probe at [h(k) + i] % M 

pros: if empty space exists, guaranteed to find it 
cons: clusters for in table => decreased performance 

cluster - group of adjacent occupied cells 
if first half full then insert is O(n) 

Quadratic probing: ith probe at [h(k) + i^2] % M 
-mitigates clustering problem (still can have 2nd order clusters) 

Double hashing: 
-use two hash functions 
-ith probe at [h1(k) + h2(k)*i] % M 

Cons: 
-to disambiguate between empty slot and one that used to be occupied need 

ghost 
-must add ghost elements when an element is deleted 

Dynamic hashing - increase table size and rehash when load factor get too high 
 
Hashing 
Pros: O(1) insert, search, remove (if done right) 
Cons: 

-table does not maintain element order ie: nth element is O(n) 
-requires more memory than trees (in order for load factor to be small) 

Hash Functions: 
Hash code: maps key to integer 
Compression function: maps integer to index in table (use modulus) 
-should be deterministic and fast 
-want to minimize collisions 
ex: 
Hash(i) -> i % M [M = table size) 
Hash(i) -> floor(i * alpha) % M 
Hash( c_0 || c_1 ||  … c_{l-1}): 



return c_0*al -1 + … + cl - 1a
0 

Amortized Analysis: 
-consider average cost over a sequence of operations 
-occasionally pay high cost (ex: rehashing), but over sequence of operations, average still ok 
 
Trees 
-direct connected acyclic graph 
-each node has unique parent (except root which has none) 
Node: (for binary tree) 

value 
left child 
right child 

Internal node - node with children 
Leaf node - node with no children 
Binary tree - each none has at most 2 children 
proper binary tree - all internal nodes have two children 
Complete binary tree - all levels have max # nodes possible except for lowest which is filled left 
to right 
max height = max depth 
Implementation 
-array based (think binary heaps) 

-not space efficient for sparse trees [O(2n) for "linked list" tree] 
-pointer based 
 
General Tree - can have arbitrarily many children 
Converting general tree to binary tree (think pairing heaps) 
-left pointer points to first child, right pointer points to next sibling 
 
Tree Traversal 
Preorder: Node, Left, Right 
Inorder: Left, Node, Right 
Post order: Left, Right, Node 

-forms of depth first search (the only difference between these modes is when a value is 
handled) 

-pre order, post order and level order generalize to general trees 
Level order: each level traverse left to right and then top down 

-think breadth first search, use queue 
 
Binary Search Trees 
-invariant left child's key <= node's key <= right child's key [if left and right children exist] 
-for complete binary search tree searches take O(log(n)) time, O(n) for "linked list" tree O(n) for 
unordered trees 



-order => finding nth largest possible (in order traversal that stops at nth element) Q: how to do 
this in < O(n) 
Given set of keys, if you always insert the largest or smallest left => tree becomes zig-zagged 
listed list => search, insert, O(n) 
Complexity depends on height => want balanced tree with low height 
Deletion: 

-if node has <= 1 child then deletion easy 
-if node has 2 children, swap with either its inorder successor, or its inorder predecessor 

then remove (inorder predecessor guaranteed not to have right child) 
 
Insert, delete, search O(n) in worst case :( 
=> need tree that maintains balance of tree 
tree vs hash table: search tree maintains elt order 
 
AVL Trees 
balance(node) = height(left child) - height(right child) 
invariant: for each node, -1 <= balance(node)) <= 1 
 
Claim: if invariant holds, then height of tree is O(log N) 
Let n(h) = min number of nodes for tree of height h 
n(0) = 0, n(1) = 1 
For h > 1 minimal tree formed by taking minimal trees whose heights differ by 1 
n(h) = n(h - 1) + n(h - 2) 
=> Fibonacci numbers are recurrences closed form solution 
=>  (h) n ≈ √5

ϕn  
 
So n(h) = Omega(2^h) => h = O(log(n)) TODO: check this 
  
Corollary: search is O(log N) 
 
Problem: Normal insert or delete could make tree unbalance. 
Solution: starting with newly inserted or deleted node, more up tree and rebalance using 
rotations 
 
Rotations 
4 cases 
  



Right Rotation (Left Ration analogous) 

 
 
Left Right Rotation ie: double rotation (Right Left Rotation analogous) 

 



insertion: insert as normal then rebalance 
deletion: delete as normal then rebalance 
search, min, max, successor, predecessor - same as BST 
Time to rebalance after insert or delete is O(log(n)) => insert, delete O(log(n)) 
 
Graphs 
Def: Let V be a set of vertices and E ⊆ V x V be a set of edges connecting these vertices. Then 
G = (V, E) is called a graph 
 
Directed graph - vertices  that comprise edges are ordered ie: edges have directions 
Undirected graphs - edges do not have directions 
Weighted graph - edges have weights 
 
Simple graph - no parallel edges of self loops 
Multi graph - allows parallel edges 
 
Representations: 
adjacency list: array with entry for each vertex, array entries are lists of elements adjacent to 
vertex 
-requires O(|V| + |E|) space [technically |V| + 2|E| for undirected graphs] 
-check for existence of edge takes O(|V|) worst case 
adjacency matrix: mij = 1 iff edge from i to j 
-matrix symmetric for undirected graphs 
-O(V2) space 
-O(1) time to check for edge 
-store edge weights for weighted graphs or infinity if edge does not exist 
 
Sparse graph: |E| << |V2| or |E| ~ |V| 

-use adjacency list 
Dense graph: |E| ~ |V2| 

-use adjacency matrix 
 
Path - sequences of vertices where each is connected to the previous 
Simple path - path the does not contain the same vertex twice 
Cycle - path from a vertex to itself (removing starting/ending vertex should yield simple path) 
Connected - paths exist between all pairs of vertices 
 
Depth First Search 
put starting node on stack 
while stack not empty 

visit top node (and pop it from stack) 
add unvisited neighbors of node to stack 

 



Visits each vertex once, follows each edge once => O(V + E) for adjacency list, O(V2) for 
adjacency matrix 
Always finds path between nodes of one exists 
 
Breadth First Search 
put starting node at front of queue 
while queue not empty 

visit front element (and pop from queue) 
add unvisited neighbors to queue 

 
Finds shortest path to node if all edges have same weight 
Use BFS to print tree in level order 
Sample complexity analysis as DFS 
 
Minimum Spanning Tree 
Problem: Given G = (V, E), find subset E' of E such that G' = (V, E') is a tree with minimal edge 
weight [assuming G is connected, if G not connect, then find minimum spanning forest] 
 
-For unweighted graphs all spanning trees are minimum spanning trees 
-All MSTs have V - 1 edges (the minimum needed to connect all vertices) 
 
Making Change 
Using coins with values: 1, 7, 15 make 21 cents in change 
15,1,1,1,1,1,1 <= greedy 
7,7,7 <= optimal 
 
Knapsack 
Integer weights and capacity knapsack 
knapsack(capacity, items) 

max_val = [0] * (capacity + 1) 
for i in range(1, capacity + 1) 

//try adding each item 
for w, v in items 

if w <= i and max_val[i - w] + v > max_val[i] 
max_val[i] = max_val[i - w] + v 

return max_val[capacity] 
 






